\qquad

Predicting the Graph of a Polynomial Practice

Date \qquad Period \qquad

1) Let's predict the graph of $f(x)=(x+2)^{2}(x-2)$

What is its degree? \qquad
What are the x-intercepts? Mark them on graph.

Put a dot on the y-intercept.
Are there any x-intercepts with a multiplicity of 2 or more? \qquad
Is this an even or odd multiplicity? \qquad
Because it's (even/odd), it will have a (bounce/bend) at that intercept.

Draw a dark dot on the x-intercept with a multiplicity of 2 or more and write (bounce/bend) next to it.

How should the left and right sides of this graph behave? (up? down?) REMINDER: Even degree functions have the same end behaviors. Odd degree functions have opposite end behaviors.

Now, let's try to draw this!

2) Let's predict the graph of $f(x)=x(x+2)^{3}$

What is its degree? \qquad
What are the x -intercepts? Mark them on graph.

Put a dot on the y-intercept.
Are there any x -intercepts with a multiplicity of 2 or more? \qquad
Is this an even or odd multiplicity? \qquad
Because it's (even/odd), it will have a (bounce/bend) at that intercept.

Draw a dark dot on the x-intercept with a multiplicity of 2 or more and write (bounce/bend) next to it.

How should the left and right sides of this graph behave? (up? down?)
REMINDER: Even degree functions have the same end behaviors. Odd degree functions have opposite end behaviors.

Now, let's try to draw this!

3) Let's predict the graph of $f(x)=(x-1)(x+2)^{3}$

What is its degree?
What are the x-intercepts? Mark them on graph.
\qquad
Put a dot on the y-intercept.
Are there any x-intercepts with a multiplicity of 2 or more? \qquad
Is this an even or odd multiplicity? \qquad
Because it's (even/odd), it will have a (bounce/bend) at that intercept.

Draw a dark dot on the x-intercept with a multiplicity of 2 or more and write (bounce/bend) next to it.

How should the left and right sides of this graph behave? (up? down?) REMINDER: Even degree functions have the same end behaviors. Odd degree functions have opposite end behaviors.

Now, let's try to draw this!

4) Let's predict the graph of
$f(x)=(x-2)(x+1)^{2}$
What is its degree? \qquad
What are the x-intercepts? Mark them on graph.

Put a dot on the y-intercept.
Are there any x-intercepts with a multiplicity of 2 or more? \qquad
Is this an even or odd multiplicity? \qquad
Because it's (even/odd), it will have a (bounce/bend) at that intercept.

Draw a dark dot on the x-intercept with a multiplicity of 2 or more and write (bounce/bend) next to it.

How should the left and right sides of this graph behave? (up? down?)
REMINDER: Even degree functions have the same end behaviors. Odd degree functions have opposite end behaviors.

Now, let's try to draw this!

